

0957-4166(95)00058-5

Microbial Synthesis of Optically Pure (R)-2,4,4-Trimethyl-3-(2'-hydroxyethyl)-cyclohex-2-en-1-ol, a New and Versatile Chiral Building Block for Terpene Synthesis.

Gérard Aranda * and Mireille Bertranne

Laboratoire de Synthèse Organique, Unité 1308 associée au CNRS, Ecole Polytechnique, 91128-Palaiseau Cedex, France.

Robert Azerad * and Michèle Maurs

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Unité 400 associée au CNRS, Université R.Descartes-Paris V, 45 rue des Saints-Pères, 75270-Paris Cedex 06, France.

Abstract: The hydroxylation of 2,4,4-trimethyl-3-(2'-hydroxyethyl)-2-cyclohexene by *Mucor plumbeus*, after usual work up and a subsequent single crystallization, gave the corresponding optically pure (1R)-hydroxy synthon.

The preparation of homochiral building blocks is a constant target in modern organic chemistry focused towards the asymmetric synthesis of bioactive natural substances. If one considers biologically active molecules of the terpene family such as forskolin 1¹, taxol 2², strigol 3³, erigerol 4⁴, among many others, they are all characterized by a (1S)-1-hydroxy-2,4,4-trimethyl-2-cyclohexene (or cyclohexane) partial structure.

The use of racemic (or achiral) 1-oxygenated synthons derived from α - or β -cyclocitral and α - or β -ionones has been extensively explored for the synthesis of ring A(B) precursors of these terpenes ^{1,2,5-12}. Such an approach involves either a resolution step, or an asymmetric reduction of the 1-carbonyl function. On the other hand, a number of studies have been devoted to the elaboration of simplified homochiral 4,4-dimethyl-1-hydroxy-2-cyclohexene units; most of them call for a complementary introduction of other alkyl and/or functionalized substituents into the cyclohexene ring ¹³⁻¹⁷.

Our ongoing studies correspond in part to the elaboration of biologically active terpene structures by microbiological regio- and/or stereoselective hydroxylation reactions ¹⁸⁻²⁴, and the purpose of our present investigation was the direct synthesis, as a model, of such a versatile highly substituted 1-hydroxylated cyclohexene-derived homochiral building block.

2,4,4-Trimethyl-3-(2'-hydroxymethyl)-2-cyclohexene 6, easily obtained by reduction (NaBH₄/THF, or LiAlH₄/Et₂O) of the corresponding commercially available aldehyde 5, itself obtained in high yield from β -cyclo-

citral 25,26 , was incubated 2 days with *Mucor plumbeus* CBS 110-16, a powerful hydroxylating microorganism, which has been previously used for allylic hydroxylations $^{18-23}$. After chromatography of the incubation products, a major 1-hydroxy derivative 7 (45-50 %) and a minor 3-hydroxy derivative 8 (3-5 %) were obtained (*Scheme 1*) and identified by usual spectroscopic methods 27 . Diol 7 was dextrorotatory, with $[\alpha]_D = +19.6$ (c 1.4) in MeOH or +22.7 (c 2.1) in CHCl₃, and exhibited an enantiomeric excess of about 55 % 28 , estimated by 1 H-NMR in the presence of an Eu(III)-chiral shift reagent. Dissolved in a CH₂Cl₂-pentane mixture, on standing at 4°C, diol 7 reproducibly deposited nice sheaves of crystals corresponding to the racemic diol (m.p. 81-81.5°C). The remaining colorless oil, obtained after evaporation of the mother liquors, turned out to be a pure enantiomer (ee≥98%), $[\alpha]_D^{22} = +36.9$ (c 0.74, CHCl₃) or +43.5 (c 1.8, EtOH), finally isolated in a 30-35% yield.

An assignment of the absolute configuration of the 1-hydroxy metabolite 7, based exclusively on previously established optical rotation measurements, was questionable: all known (R)-alcohols I-VI (*Scheme 2*) are dextrorotatory, either in chloroform or in methanol solution; their esters, when described, behave similarly, exhibiting again positive rotations in either solvent.

However, deviating from this homogeneous family, the 3-substituted alcohol 9 and the corresponding esters 10 derived from β -ionone show anomalous optical rotations. (S)-Alcohol 9 is dextrorotatory in ethanol and levorotatory in chloroform solution ^{12,33}. Furthermore, the rotation of (S)-esters 10 (in EtOH) is opposite to that of the corresponding alcohol. So it was uncertain to deduce the absolute configuration of 7 from such conflicting data, and a conversion into a compound of known optical rotation was necessary.

9:
$$R = H$$
 (S, $CHCl_3$) [α]_D -13
(S, $EIOH$) [α]_D +7
10: $R = COCH_3$ (S, $EIOH$) [α]_D -51.4
 $R = COCH_2COCH_3$ (S, $EIOH$) [α]_D -51.4

The levorotatory (S)-alcohol 11 has been previously obtained by borane reduction of the corresponding 1-ketone in the presence of an (R)-oxazoborolidine as a chiral catalyst ³². In our hands, any attempt to perform the (enantioselective) reduction of the 1-keto derivative of 6, following exactly the same protocole, or using a recently modified reagent ³⁴, completely failed to give the desired diol 7.

Another approach was a conversion of the microbiologically obtained diol 7 to the known 1-hydroxy diene 11 ³², by using mesylation or tosylation of the primary alcohol function, then elimination with NaI/DBU in acetonitrile, as previously and similarly described for the preparation of a conjugated diene from the corresponding hydroxyethyl compound 6. The regioselective sulfonate ester formation at the primary alcohol function of diol 7 was easily realized, but the subsequent iodation and elimination by DBU were uneffective. Other methods for elimination of tosylate or mesylate with Li₂CO₃, Li₂CO₃/LiBr ^{35,36}, LiBr/pyridine, LiBr/NaOAc ³⁶

in DMF solution were similarly uneffective. The unique positive result was, with the latter reagent, the isolation of a primary O-acetyl derivative as the major substitution product, and the presence of minute amounts of the desired conjugated 1-hydroxy diene (1-2 %), only detected by NMR in the crude reaction mixture. Such results can be hypothetically understood through the formation of delocalized cationic intermediates classically generated from an homoallylic leaving function ³⁷.

Scheme 3: a) m-CPBA (1.5 eq.), CH_2Cl_2 , $0^{\circ}C$, 16 h; b) O3, CH_2Cl_2 -pyridine (4:1), -78°C, then Me_2S (5 eq.); c) 5% pyrrolidine, Et_2O , $4^{\circ}C$, 2 days; d) $(C_6H_5)_3P^+CH_3$, Br^- (1.5 eq.), BuLi (1.5 eq.), THF, $0^{\circ}C$.

The reverse approach, starting from an enantiomerically enriched 1-hydroxydiene 11, and using a hydroboration reaction to convert it to a diol 7 of known configuration, was more successful. The racemic hydroxydiene 11 was obtained from α -ionone (*Scheme 3*) following previously described methods ^{3,38,39}; epoxide opening and proton elimination were significantly improved (90-95% yield) by using 5% freshly distilled pyrrolidine in anhydrous ethyl ether at 4°C. Partial enzymic acetylation of (\pm)-11 in freshly distilled vinyl acetate ⁴⁰, catalyzed by lipase PS (Amano), allowed to obtain (*Scheme 4*, after chromatographic separation, the levorotatory (S)-alcohol 11 ($[\alpha]_D$ –5.5, c 1.55 in CHCl₃) and the dextrorotatory diene acetate 12 ($[\alpha]_D$ +18.7, c 1.8 in CHCl₃). Hydrolysis of this (+)-ester (NaOH/MeOH, 0°C) to the (R)-alcohol 11, which was submitted again to the same enzymatic transesterification, resulted in an enriched (R)-acetate 12 ($[\alpha]_D$ +31, c 2 in CHCl₃; 56 % ee ⁴¹).

OH
$$\frac{\text{lipase}}{PS}$$

$$\frac{PS}{\text{OAc}}$$

$$OH$$

$$(\pm)-11$$

$$OH$$

$$(+)-13$$

$$OH$$

Hydroboration of the enantiomerically enriched (R)-acetate 12 with BH₃/Me₂S in THF at 0° C ⁴², followed by oxidation with alkaline hydrogen peroxide, allowed the recovery of a 2:1 mixture of the desired diol acetate 13 and diol 7 (resulting from a partial hydrolysis of the ester). The (R)-diol acetate 13 ⁴³ was dextrorotatory in CHCl₃ and in EtOH ([α]_D +44.7, c 2.2), just as the (R)-diol 7 ([α]_D +19.5, c 1.25 in CHCl₃ and +24.4, c 1.25 in EtOH). The comparison of optical rotations of the authentic (R)-diol and of the microbial hydroxylation product 7 undoubtedly showed that the latter has the (R)-configuration.

Work is in progress to combine this microbial functionalization with a classical inversion of the (R)-allylic alcohol into its (S)-enantiomer by a Mitsunobu reaction, using previously described conditions ¹². Thus, the microbial hydroxylation may give access to a new 1-hydroxy-2,4,4-trimethyl-cyclohexene-derived chiral synthon in both enantiomeric forms. In addition, this reaction may be considered as an initial step for the elaboration of one of the appropriate 1,5-dioxygenated synthons commonly used for the building of the AB ring system of taxol ².

References and Notes

- Colombo, M. I.; Zinczuk, J.; Rùveda, E. A. Tetrahedron 1992, 48, 963-1037, and references therein. Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem. Int. Ed. Engl. 1994, 33, 15-44, and references therein. Pepperman Jr., A. B.; Blanchard, E. J. In The chemistry of allelopathy. Biochemical interactions among plants, ACS Symp. Ser. 268, Thompson, A. C. Ed; American Chemical Society: Washington D.C., 1985; pp. 415-425. Kienzle, F.; Stadlwieser, J.; Rank, W.; Mergelsberg, I. Tetrahedron Lett. 1988, 29, 6479-6482. Heather, J. B.; Mittal, R. S. D.; Sih, C. J. J.Am. Chem. Soc. 1976, 98, 3661-3669. Pepperman, A. B. J. Org. Chem. 1981, 46, 5039-5041. Sierra, M. G.; Spanevello, R. A.; Rùveda, E. A. J. Org. Chem. 1983, 48, 5111-5112. Brooks, D. W.; Bevinakatti, H. S.; Kennedy, E.; Hathaway, J. J. Org. Chem. 1985, 50, 628-632. He, J.-F.; Wu, Y.-L. Synth. Commun. 1985, 15, 95-99. Somoza, C.; Darias, J.; Rùveda, E. A. J. Org. Chem. 1989, 54, 1539-1543. Venkataraman, H.; Cha, J. K. J. Org. Chem. 1989, 54, 2505-2506. Lallemand, J. Y.; Leclaire, M.; Levet, R.; Aranda, G. Tetrahedron: Asymmetry 1993, 4, 1775-1778. Jenkins, P. R.; Menear, K. A.; Barraclough, P.; Nobbs, M. S. J. Chem. Soc. Chem. Commun. 1984, 1423-1424.

- Jenkins, P. R.; Menear, K. A.; Barraclough, P.; Nobbs, M. S. J. Chem. Soc. Chem. Commun. 1984, 1423-1424. Polla, M.; Frejd, T. Tetrahedron 1991, 47, 5883-5894. 13.

18.

Mori, K.; Puapuoomchareon, P. Liebigs Ann. Chem. 1991, 1053-1056.
Mori, K.; Puapuoomchareon, P. Liebigs Ann. Chem. 1991, 1053-1056.
Mori, K. Bull. Soc. Chim. Belg. 1992, 101, 393-405.
Mori, K.; Amaike, M.; Masamichi, I. Tetrahedron 1993, 49, 1871-1878.
Aranda, G.; Lallemand, J. Y.; Hammoumi, A.; Azerad, R. Tetrahedron Letters 1991, 32, 1783-1786.
Aranda, G.; El Kortbi, M. S.; Lallemand, J.-Y.; Neuman, A.; Hammoumi, A.; Facon, I.; Azerad, R. Tetrahedron 1991, 32, 1783-1786. 19. **1991**, 47, 8339-8350.

- Hammoumi, A.; Revial, G.; D'Angelo, J.; Girault, J.-P.; Azerad, R. Tetrahedron Lett. 1991, 32, 651-654.
 Aranda, G.; Facon, I.; Lallemand, J.-Y.; Leclaire, M.; Azerad, R.; Cortes, M.; Lopez, J.; Ramirez, H. Tetrahedron Lett. 1992, 33, 7845-7848.

Hammoumi, A.; Girault, J.-P.; Azerad, R.; Revial, G.; D'Angelo, J. Tetrahedron Asymmetry 1993, 4, 1295-1306.
 Azerad, R. Chimia 1993, 47, 93-96.
 Aranda, G.; Lallemand, J.-Y.; Azerad, R.; Maurs, M.; Cortes, M.; Ramirez, H.; Vernal, G. Synth. Commun. 1994, 24, 2525-2535.

24, 2525-2535.
25. Lee, E.; Shin, I. J.; Kim, T. S. J.Am.Chem.Soc. 1990, 112, 260-264.
26. de Jong, J. C.; Wildeman, J.; van Leusen, A. M.; Feringa, B. L. Synth, Commun. 1990, 20, 589-596.
27. Diol 7. IR (CCl4) cm⁻¹: 3628, 3446, 2963, 2934, 1469, 1378, 1024. ¹H-NMR (CDCl₃) δppm, J Hz; 0.96, 1.04 (6H, 2s, 4-CH₃), 1.77 (3H, s, 2-CH₃), 2.36 (2H, m, 2'-CH₂), 3.91 (1H, br.t J= 4.3, 1-CHOH). ¹³C-NMR (CDCl₃) δppm: 138.0, 131.1 (C-2 and C-3), 70.2 (C-1), 62.0 (C-2'), 35.3 (C-4), 34.5 (C-5), 32.4 (C-1'), 28.6 (C-6), 28.5, 27.2 (4-CH₃), 17.4 (2-CH₃). HRMS for C₁₁H₂₀O₂, calc 184.14633, found 184.14635. MS (EI, 70ev) m/z(%): 184(29) M⁺, 169(11) [M-CH₃]⁺, 166(22) [M-H₂O]⁺, 151(10) [M-(15+18)]⁺, 139(99) [M-CH₂CH₂OH]⁺, 128(96), 109(38), 95(41), 72(41), 55(39), 43(100).
Diol 8. Colorless oil. [α]_D²²-0.2 (c 1, CHCl₃), IR (CCl₄) cm⁻¹: 3630, 3574, 2929, 2853, 1464, 1379, 1263, 1034. ¹H-NMR (CDCl₃) δppm, J Hz: 1.03, 1.09 (6H, 2s, 4-CH₃), 1.67 (3H, s, 2-CH₃), 2.07 (2H, br.t J=6.1, 1-CH₂), 2.38 (2H, br.t J=8.1, 1'-CH₂), 3.51 (1H, dd J=8.6 and 3.3, 5-CHOH), 3.63 (2H, br.t J=8.1, 2'-CH₂). ¹³C-NMR (CDCl₃) δppm: 131.4, 129.1 (C-2 and C-3), 76.0 (C-5), 62.6 (C-2'), 40.0 (C-4), 32.5 (C-1), 32.0 (C-1'), 26.7 (C-6), 26.6, 22.0 (4-CH₃), 20.1 (2-CH₃), MS (EI, 70ev) m/z(%): 184(5) M⁺, 166(29) [M-H₂O]⁺, 151(10) [M-(15+18)]⁺, 136(32) [M-(18+30)]⁺, 133(36) [M-(36+15)]⁺, 121(96) [M-(18+45)]⁺, 107(100), 93(60), 91(58), 81(81), 79(52), 67(74), 55(41), 43(67).
28. In other experiments, higher enantiomeric excesses (as high as 80%) were obtained.

81(81), 79(52), 67(74), 55(41), 43(67).

In other experiments, higher enantiomeric excesses (as high as 80%) were obtained.
Fukazawa, T.; Hashimoto, T. Tetrahedron: Asymmetry 1993, 4, 2323-2326.

Paquette, L. A.; Combrink, K. D.; Elmore, S. W.; Rogers, R. D. J.Am.Chem.Soc. 1991, 113, 1335-1344.

Mori, K.; Hzra, B. G.; Pfeiffer, R. J.; Gupta, A. K.; Lindgren, B. S. Tetrahedron 1987, 43, 2249-2254.

Corey, E. J.; Da Silva Jardine, P.; Mohri, T. Tetrahedron Lett. 1988, 29, 6409-6412.

Haag, A.; Eschenmoser, W.; Eugster, C. H. Helv.Chim.Acta 1980, 63, 10-15.

Mathre, D. J.; Jones, T. K.; Xavier, L. C.; Blacklock, T. J.; Reamer, R. A.; Mohan, J. J.; Turner Jones, E. T.; Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. J. Org. Chem. 1991, 56, 751-762.

Cardona, L.; Garcia, B.; Giménez, J. E.; Pedro, J. R. Tetrahedron 1992, 48, 851-860.

Takatsuto, S.; Shimazaki, K. Biosci. Biotech. Biochem. 1992, 56, 163-164.

Winstein, S.: Adams, R. J. Am. Chem. Soc. 1948, 70, 838-845.

Akaisuto, S., Silinazaki, K. Biosci. Biotech. Biochem. 1992, 30, 163-164.
 Winstein, S.; Adams, R. J.Am. Chem. Soc. 1948, 70, 838-845.
 Ziegler, F. E.; Jaynes, B. H.; Saindane, M. T. Tetrahedron Lett. 1985, 26, 3307-3310.
 Nicolaou, K. C.; Li, W. S. J. Chem. Soc. Chem. Commun. 1985, 421.
 Faber, K.; Riva, S. Synthesis 1992, 895-910.
 Separation and determination of ee% of enantiomeric acetates 12 was performed by GC on a Chiraldex-GTA capillary control of the control o

Separation and determination of ee% of enantiomeric acetates 12 was performed by GC on a Chiraldex-GTA capillary column (30 m, 105°C, He carrier gas); retention times: (R), 34.5 min; (S), 35.2 min.
 Lee, E.; Lee, Y. R.; Moon, B.; Kwon, O.; Shim, M. S.; Yun, J. A. J.Org. Chem. 1994, 59, 1444-1456.
 Diol acetate 13. IR (CCl₄) cm⁻¹: 3632, 2956, 2870, 1731, 1470, 1463, 1369, 1243, 1021. ¹H-NMR (CDCl₃) ppm, J Hz: 0.95, 1.05 (6H, 2s, 4-CH₃), 1.83 (3H, s, 2-CH₄), 2.05 (3H, s, COCH₃), 2.38 (2H, br.t J=8.3, 5-CH₂), 3.63 (2H, t J=8.3, 2'-CH₂), 5.11 (1H, br.t J=4.5,1-H). ¹³C-NMR (CDCl₃) δppm: 171.2 (OCO), 140.4, 127.5 (C-2 and C-3), 72.9 (C-1), 62.0 (C-2'), 35.1 (C-4), 34.9 (C-5), 32.6 (C-1'), 28.4, 27.0 (4-CH₃), 25.4 (C-6), 21.4 (OCOCH₃), 16.9 (2-CH₃). HRMS for C₁₁H₂₀O₂ [M-CH₂CO], calc 184.14633, found 184.14635. MS (EI, 70ev) m/z(%): 184(5) [M-CH₂CO]⁺, 166(22) [M-CH₃CO₂H]⁺, 151(25) [166-CH₃]⁺, 133(61) [151-H₂O]⁺, 121(100), 105(64), 91(67)

On standing at 4°C for several weeks, the (±)-diol acetate spontaneously crystallized; after recrystallization from CH₂Cl₂-pentane, M.p. 89-90°C. An enriched oily (R)-enantiomer was obtained from the mother liquors: $[\alpha]_D^{22}$ +65.8 (c 1.2, CHCl₃), +85.1 (c 0.9, EtOH); 94% ee determined by ¹H-NMR in the presence of an Eu(III)-chiral shift

reagent.