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Abstract: The hydroxylation of 2,4,4-trimethyl-3-(2"-hydroxyethyl)-2-cyclohexene by Mucor plumbeus, after usual
work up and a subsequent single crystallization, gave the corresponding optically pure (1R)-hydroxy synthon.

The preparation of homochiral building blocks is a constant target in modern organic chemistry focused
towards the asymmetric synthesis of bioactive natural substances. If one considers biologically active molecules
of the terpene family such as forskolin 1 1 taxol 22, strigol 3 3, erigerol 4 4 among many others, they are all
characterized by a (1S)-1-hydroxy-2.4,4-trimethyl-2-cyclohexene (or cyclohexane) partial structure.
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The use of racemic (or achiral) 1-oxygenated synthons derived from o- or B-cyclocitral and o- or p-
ionones has been extensively explored for the synthesis of ring A(B) precursors of these terpenes 125-12 gych
an approach involves either a resolution step, or an asymmetric reduction of the 1-carbonyl function. On the other
hand, a number of studies have been devoted to the elaboration of simplified homochiral 4,4-dimethyl-1-
hydroxy-2-cyclohexene units; most of them call for a complementary introduction of other alkyl and/or
functionalized substituents into the cyclohexene ring 1317

Our ongoing studies correspond in part to the elaboration of biologically active terpene structures by
microbiological regio- and/or stereoselective hydroxylation reactions ** 4 and the purpose of our present
investigation was the direct synthesis, as a model, of such a versatile highly substituted 1-hydroxylated
cyclohexene-derived homochiral building block .

2,4,4-Trimethyl-3-(2'-hydroxymethyl)-2-cyclohexene 6, easily obtained by reduction (NaBH4/THF, or
LiAlH4/Et70) of the corresponding commercially available aldehyde 5, itself obtained in high yield from B-cyclo-
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citral 2526, was incubated 2 days with Mucor plumbeus CBS 110-16, a powerful hydroxylating microorganism,
which has been previously used for allylic hydroxylations 1823 After chromatography of the incubation
products, a major 1-hydroxy derivative 7 (45-50 %) and a m1n01 3- hyd1oxy derivative 8 (3-5 %) were obtained
(Scheme 1) and identified by usual spectroscopic methods 27. Diol 7 was dextrorotatory, w1th [U.]D +19.6
(c 1.4) in MeOH or +22.7 (c 2.1) in CHCl3, and exhibited an enantiomeric excess of about 55 % 2 estimated by
IH.NMR in the presence of an Eu(III)-chiral shift reagent. Dissolved in a CH2Clp-pentane mixture, on standing
at 4°C, diol 7 reproducibly deposited nice sheaves of crystals corresponding to the racemic diol (m.p. 81-
81.5°C). The remaining colorless oil, obtained after evaporation of the mother liquors, turned out to be a pure en-
antiomer (ee298%), [0]p22= +36.9 (c 0.74, CHCl,) or +43.5 (c 1.8, EtOH), finally isolated in a 30-35% yield.
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Scheme 1

An assignment of the absolute configuration of the 1-hydroxy metabolite 7, based exclusively on
previously established optical rotation measurements, was questionable: all known (R)-alcohols I-VI (Scheme 2)
are dextrorotatory, either in chloroform or in methanol solution; their esters, when described, behave similarly,
exhibiting again positive rotations in either solvent.

s<NcQegoges

129 i 30 111 31 V14 VIS 132
[a]p: +130.6 (CHCl3) +40.9 (CHCI3) +94.6 (CHCI3) +48.8 (CDCl3) +95.7 (MeOH) +53 (CHCI3)
Scheme 2

However, deviating from this homogeneous family, the 3-substituted alcohol 9 and the corresponding
esters 10 derived from B-ionone show anomalous optical rotations. (S)-Alcohol 9 is dextrorotatory in ethanol
and levorotatory in chloroform sotution 1233, Furthermore, the rotation of (S)-esters 10 (in EtOH) is opposite to
that of the corresponding alcohol. So it was uncertain to deduce the absolute configuration of 7 from such
conflicting data, and a conversion into a compound of known optical rotation was necessary.

m-O

9: R=H (S, CHCh) [adp -13

(S, EfOH) [alp +7
10: R= COCH3 (S, E©OH) [alp -78
R= COCH;COCHj3 (S, EiOH) [o]p -51.4 (S)11

The levorotatory (S)-alcohol 11 has been previously obtalned by borane reductton of the
corresponding 1-ketone in the presence of an (R)-oxazoborolidine as a chiral catalyst 2. In our hands, any
attempt to perform the (enantioselective) reduction of the 1-keto derivative of 6, following exactly the same
protocole, or using a recently modified reagent Ead completely failed to give the desired diol 7.

Another approach was a conversion of the microbiologically obtained diol 7 to the known 1-hydroxy
diene 1132, by using mesylation or tosylation of the primary alcohol function, then elimination with Nal/DBU in
acetonitrile, as previously and similarly described for the preparation of a conjugated diene from the
corresponding hydroxyethyl compound 6. The regioselective sulfonate ester formation at the primary alcohol fun-
ction of diol 7 was easily realized, but the subsequent iodation and elimination by DBU were uneffective. Other
methods for elimination of tosylate or mesylate with LipCOs, LioCO4/LiBr 35.36 , LiBr/pyridine, LiBr/NaOAc 36
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in DMF solution were similarly uneffective. The unique positive result was, with the latter reagent, the isolation
of a primary O-acetyl derivative as the major substitution product, and the presence of minute amounts of the
desired conjugated 1-hydroxy diene (1-2 %), only detected by NMR in the crude reaction mixture. Such results
can be hypothetically understood throu§h the formation of delocalized cationic intermediates classically generated

from an homoallylic leaving function 3
H
ab c d
Z /
HO HO (#)-11

Scheme 3: a) m-CPBA (1.5 eq.), CH3Cly, 0°C, 16 h; b) 03, CH,Cly-pyridine (4:1), -78°C, then Me)S
(5 eq.); ¢) 5% pyrrolidine, Et;0, 4°C, 2 days; d) (CHs)3P+CH3,Br - (1.5 eq.), BuLi (1.5 eq.), THF, 0°C.

The reverse approach, starting from an enantiomerically enriched 1-hydroxydiene 11, and using a hydrobo-
ration reaction to convert it to a diol 7 of known configuration, was more successful. The racemic hydroxydiene
11 was obtained from o-ionone (Scheme 3) following previously described methods 3,383, ; epoxide opening
and proton elimination were significantly improved (90-95% yield) by using 5% freshly distilled pyrrolidine in
anhydrous ethyl ether at 4°C. Partial enzymic acetylation of (1)-11 in freshly distilled vinyl acetate ™", catalyzed
by lipase PS (Amano), allowed to obtain (Scheme 4, after chromatographic separation, the levorotatory (S)-
alcohol 11 ([a]p —5.5, ¢ 1.55 in CHCl3) and the dextrorotatory diene acetate 12 ([a]p +18.7, ¢ 1.8 in CHCl3).
Hydrolysis of this (+)-ester (NaOH/MeOH, 0°C) to the (R)-alcohol 11, which was submitted again to the same
enzymatic transesterification, resulted in an enrlched (R)-acetate 12 ([a}p +31, ¢ 2 in CHCl3; 56 % ee 41)

Ac H
BH;,
H MeZS +
llpase OH OH
(+) -12 (+)13 (+)-7

F
/—OAc .

(*>11
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->r11
Scheme 4

Hydroboration of the enantiomerically enriched (R)-acetate 12 with BH3/Me,S in THF at 0°C %2, followed
by oxidation with alkaline hydrogen peroxide, allowed the recovery of a 2:1 mixture of Lhe desired diol acetate 13
and diol 7 (resulting from a partial hydrolysis of the ester). The (R)-diol acetate 1343 was dextrorotatory in
CHCI13 and in EtOH ([a]p +44.7, ¢ 2.2), just as the (R)-diol 7 ([a]p +19.5, ¢ 1.25 in CHCl3 and +24.4,
¢ 1.25 in EtOH). The comparison of optical rotations of the authentic (R)-diol and of the microbial hydroxylation
product 7 undoubtedly showed that the latter has the (R)-configuration.

Work is in progress to combine this microbial functionalization with a classical inversion of the (R)-allylic
alcohol into its (S)-enantiomer by a Mitsunobu reaction, using previously described conditions 12 Thus, the mi-
crobial hydroxylation may give access to a new 1-hydroxy-2,4,4-trimethyl-cyclohexene-derived chiral synthon in
both enantiomeric forms. In addition, this reaction may be considered as an initial step for the elaboration of one
of the appropriate 1,5-dioxygenated synthons commonly used for the building of the AB ring system of taxol 2
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